

Tier 2
Workstation &

Device Admins

Tier 0
Domain &

Enterprise Admins

Tier 1
Server Admins

1. Beachhead (Phishing Attack, etc.)

2. Lateral Movement
a. Steal Credentials

b. Compromise more hosts &

credentials

3. Privilege Escalation
a. Compromise unpatched servers

b. Get Domain Admin credentials

4. Execute Attacker Mission
a. Steal data, destroy systems, etc.

b. Persist Presence

24-48 Hours

How to protect your privileges against these attacks

2-4 weeks 1-3 months 6+ months

Attack Defense

Three Stage Mitigation Plan

http://aka.ms/privsec

http://aka.ms/pthdemo
http://aka.ms/privsec

These practices are still important
Part of a complete long term security strategy

Domain Controller Security Updates

Target full deployment within 7 days

Remove Users from Local

Administrators

Manage exceptions down to near-zero

Ensure only admin of one workstation

Baseline Security Policies

Apply standard configurations

Manage exceptions down to near-zero

Anti-Malware

Detect and clean known threats

Log Auditing and Analysis

Centralize logs to enable investigations

and analysis

Software Inventory and Deployment

Ensure visibility and control of

endpoints to enable security operations

1. Separate Admin
account for admin tasks

3. Unique Local Admin Passwords

for Workstations
http://Aka.ms/LAPS

2. Privileged Access Workstations (PAWs)
Phase 1 - Active Directory admins
http://Aka.ms/CyberPAW

4. Unique Local Admin

Passwords for Servers
http://Aka.ms/LAPS

2-4 weeks 1-3 months 6+ months

First response to the most frequently used attack techniques

http://aka.ms/LAPS
http://aka.ms/CyberPAW
http://aka.ms/LAPS

First response to the most frequently used attack techniques
2-4 weeks 1-3 months 6+ months

Top Priority Mitigations

Attack Defense

2. Time-bound privileges (no permanent admins)
http://aka.ms/PAM http://aka.ms/AzurePIM

1. Privileged Access Workstations (PAWs)
Phases 2 and 3 –All Admins and additional hardening

(Credential Guard, RDP Restricted Admin, etc.)
http://aka.ms/CyberPAW

4. Just Enough Admin (JEA)

for DC Maintenance
http://aka.ms/JEA

9872521

6. Attack Detection
http://aka.ms/ata

5. Lower attack surface

of Domain and DCs
http://aka.ms/HardenAD

2-4 weeks 1-3 months 6+ months

Build visibility and control of administrator activity, increase protection against typical follow-up attacks

3. Multi-factor for elevation

http://aka.ms/PAM
http://aka.ms/AzurePIM
http://aka.ms/CyberPAW
http://aka.ms/JEA
http://aka.ms/ata
http://aka.ms/HardenAD

2-4 weeks 1-3 months 6+ monthsAttack Defense

2. Smartcard or Passport

Authentication for all admins
http://aka.ms/Passport

1. Modernize Roles and

Delegation Model

3. Admin Forest for Active

Directory administrators
http://aka.ms/ESAE

5. Shielded VMs for

virtual DCs (Server 2016

Hyper-V Fabric)
http://aka.ms/shieldedvms

4. Code Integrity

Policy for DCs

(Server 2016)

2-4 weeks 1-3 months 6+ months

Move to proactive security posture

http://aka.ms/Passport
http://aka.ms/ESAE
http://aka.ms/shieldedvms

2-4 weeks 1-3 months 6+ monthsAttack Defense

• Based on the PowerShell security features used by online services
• Enabled remote administration of Exchange Online

• Simple concepts
• Role Capabilities

• Refined set of commands to support the activities of a specific user role

• Endpoint

• Management connection point where authorized users are provided the
appropriate role capabilities

• Identity

• Privileged alternate identity used to invoke commands

JEA: Just Enough Admin

Role Capabilities
@{

Description of the functionality provided by these settings
Description = 'Role Capabilities for DNS Maintenance'

Modules to import when applied to a session
ModulesToImport = 'DnsServer'

Cmdlets to make visible when applied to a session
VisibleCmdlets = 'Get-Service', 'Restart-Service',
'Get-DnsServerCache', 'Clear-DnsServerCache',
'Show-DnsServerCache'

Functions to define when applied to a session
FunctionDefinitions = @{

'Name' = 'whoami'
'ScriptBlock' = { $PSSenderInfo } }

}

Session Configuration
@{

Session type defaults to apply for this session configuration.
Can be 'RestrictedRemoteServer' (recommended), 'Empty', or 'Default'
SessionType = 'RestrictedRemoteServer'

Directory to place session transcripts for this session configuration
TranscriptDirectory = 'C:\Program Files\Endpoints\DnsMaintenance\Transcripts'

Whether to run this session configuration as the machine's
(virtual) administrator account
RunAsVirtualAccount = $true

User roles (security groups), and the role capabilities
that should be applied to them when applied to a session
RoleDefinitions = @{

'DnsAdmin' = @{
'RoleCapabilities' = 'DnsMaintenance' } }

}

Identity
• Who’s actually running the commands in a JEA session?

Identity Type Description

Connected User (Default) Hosting process runs under the connected user’s identity.

Named Identity Hosting process runs under the credentials of a specific

account.

Virtual Account Hosting process runs under a local temporary

administrative identity.

Group Managed Service Account

(GMSA)*

Hosting process runs under a managed domain identity

that has its password automatically managed and rotated

by Active Directory.

• JEA is about controlling admin actions

• Like all shells, PowerShell dispatches commands
• You can control what gets dispatched by traditional things like path, loading policy, etc.

• PowerShell adds command visibility

• Unlike many shells, PowerShell also does command parsing!

• Parsing is driven off of data structures
• Which you can program

• Which you can program to create proxies

• Command visibility and proxies allow us to secure the
environment

Why PowerShell?

Creating a Proxy Command

$cmd = Get-Command Stop-Process
$MetaData = New-Object System.Management.Automation.CommandMetaData $cmd

$MetaData.Parameters.Remove("ID")
$MetaData.Parameters.Name.Attributes.Add((New-Object `

System.Management.Automation.ValidateSetAttribute ("notepad","calc")
$MetaData.DefaultParameterSetName ="Name"

${Function:Stop-Process} =
[System.Management.Automation.ProxyCommand]::create($MetaData)

$cmd.Visibility = "private"

Fine-Grained Proxy Control

Cmdlets to make visible when applied to a session
VisibleCmdlets = 'Get-Service', 'Get-DnsServerCache',

'Clear-DnsServerCache', 'Show-DnsServerCache',

@{
Name = 'Restart-Service'
Parameters = @{

Name = 'Name'
ValidateSet = 'DNS','DNSCache'

}
}

• New-PSRoleCapabilityFile –Path DnsAdmins.psrc -<…>

• New-PSSessionConfigurationFile –Path DnsMaintenance.pssc -<…>

• Register-PSSessionConfiguration -Path DnsMaintenance.pssc

• Enter-PSSession -ComputerName Server1

Creating a Constrained PowerShell Configuration

• VSM is Microsoft’s virtualization-based security
solution

• VSM provides the basis for:
• Secure runtime environment

• Protected store

• VSM is available to both server and client systems

• No user interaction with VSM

Virtual Secure Mode (VSM)

VSM protections

Host Partition

Hypervisor

Guest Physical to System Physical Memory Map (GPA -> SPA map)

Normal Mode (VTL 0) Memory Access Protections Secure Mode (VTL 1) Memory Access Protections

Normal Mode
(VTL 0)

Secure Mode
(VTL 1)

VP 0

Local APIC Local APIC

User

Kernel

User

Kernel

Normal Mode
(VTL 0)

Secure Mode
(VTL 1)

Local APIC Local APIC

User

Kernel

User

Kernel

N
o

rm
al

 M
o

d
e

D
ev

ic
e

Se
cu

re
 M

o
d

e
 D

e
vi

ce
VP 1

System Physical Memory

Shared Registers Shared Registers

• Provides a new trust boundary for system software to:
• Enhance platform security

• Leverage platform virtualization to enforce strong access guarantees

• Limit access to high-value security assets, even from code running in kernel
mode

• Provide a secure store and execution environment to
enable:
• Protected storage and management of platform security assets

• Enhanced OS protection against attacks (including attacks from kernel-mode)

• A basis for strengthening protections of guest VM secrets from the host OS

Virtual Secure Mode (VSM)

• Protect security assets
• Authenticated user credentials

• Security keys

• Security policy

• Attestation logs

• Host services in isolation from the normal OS
environment
• Windows Security Applications (WSA) or “trustlets”

• Code integrity enforcement

• Attestation of host health

Uses for Virtual Secure Mode

• Virtualization extensions (Intel VT-x)

• Second Level Address Translation (Intel Extended
Page Tables, aka EPT)

• IOMMU (Intel VT-d)

• UEFI 2.3.1c or higher

• Secure Boot

• TPM v2.0

VSM platform recommendations

• VSM provides memory isolation from:
• Accesses generated by system processors

• DMA initiated from devices

• Memory isolation is:
• Based on Virtual Trust Levels, each with its own set of address space protections

• Enforced by the hypervisor

VSM memory isolation

• VSM implements trust boundaries via Virtual Trust
Levels (VTL)
• VTLs enhance existing processor privilege levels

• VTLs provide memory isolation
• Essentially, a set of access protections on physical memory

• Enforced during the partition’s physical memory translation

• VTLs cannot be changed from CPL0 in the partition

Virtual Trust Levels

• VTLs are hierarchical
• Higher trust level == greater privilege level

• Two trust levels for the initial VSM implementation:
• VTL0 – Normal Mode, VTL1 – Secure Mode

• Design accommodates > 2 VTLs

• Higher VTLs control access privileges for lower levels
• VTL1 can adjust memory access protections for VTL0

Virtual Trust Levels

• Isolation from device accesses (DMA) enforced via
IOMMU

• Normal Mode devices share Normal Mode memory
access protections
• Cannot access Secure Mode memory

VSM memory isolation

Native UEFI
Windows 8

OS Loader

Load Windows

Kernel and Drivers
3rd Party Drivers

KMCI

• Secure Boot
• Ensures that everything that boots on a platform is signed by a trusted authority

• Includes Secure Firmware Updates and “Platform” Secure Boot

• Kernel Mode Code Integrity (KMCI)
• Feature in Windows that ensures that any code running in kernel is signed by a

trusted authority

Code Integrity Enforcement

Microsoft Confidential 32

UEFI Secure Boot

Code Integrity

• Currently CI enforcement is done from within the Kernel

• If the Kernel is compromised any code can be executed

• For Hypervisor CI (HVCI) based systems enforcement will
be in VSM

• Pages can only be marked executable from VSM after
verification in VSM

• Eliminates most memory based attacks

• Reduces risk from 3’rd party drivers

Hypervisor Enforced Code Integrity

Microsoft Confidential 33

Nano Server
Server Core

Minimal Server

Interface

GUI

Shell

Windows Server 2016

0

50

100

150

200

250

300

350

Setup Time (sec)

Nano Server Server Core

Preliminary Results

0

5

10

15

20

25

Critical Bulletins

Nano Server Server Core

Full Server

0

2

4

6

8

10

12

Number of

Reboots

Nano Server Server Core

Full Server

23

8

2

6

11

3

0

1

2

3

4

5

6

Disk Footprint

(GB)

Nano Server Server Core

40

300

4.84

0.4

}

