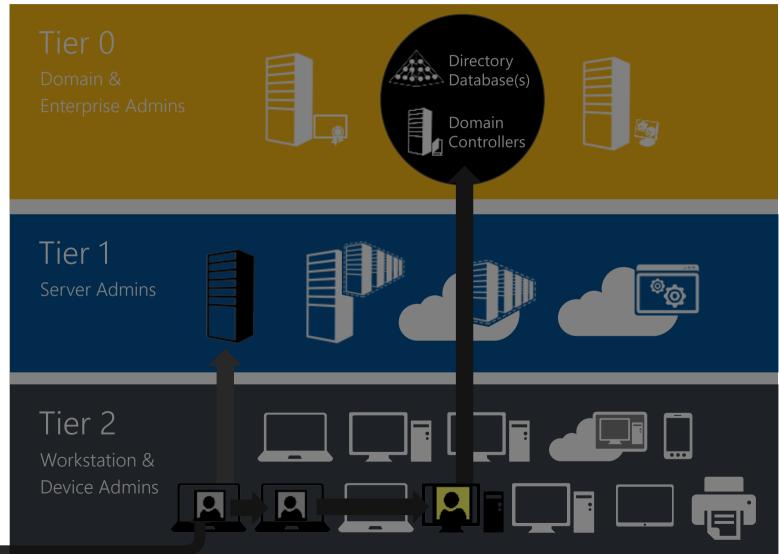


Windows Server 2016 Security

Igor Shastitko, IT infrastructure Consultant

Securing Privileged Access

A practical roadmap


Typical Credential Theft Attack

Compromises administrative control

24-48 Hours


- 1. Beachhead (Phishing Attack, etc.)
- 2. Lateral Movement
 - a. Steal Credentials
 - b. Compromise more hosts & credentials
- 3. Privilege Escalation
 - a. Compromise unpatched servers
 - b. Get Domain Admin credentials
- 4. Execute Attacker Mission
 - a. Steal data, destroy systems, etc.
 - b. Persist Presence

How to protect your privileges against these attacks

Attack Defense

These practices are still important Part of a complete long term security strategy

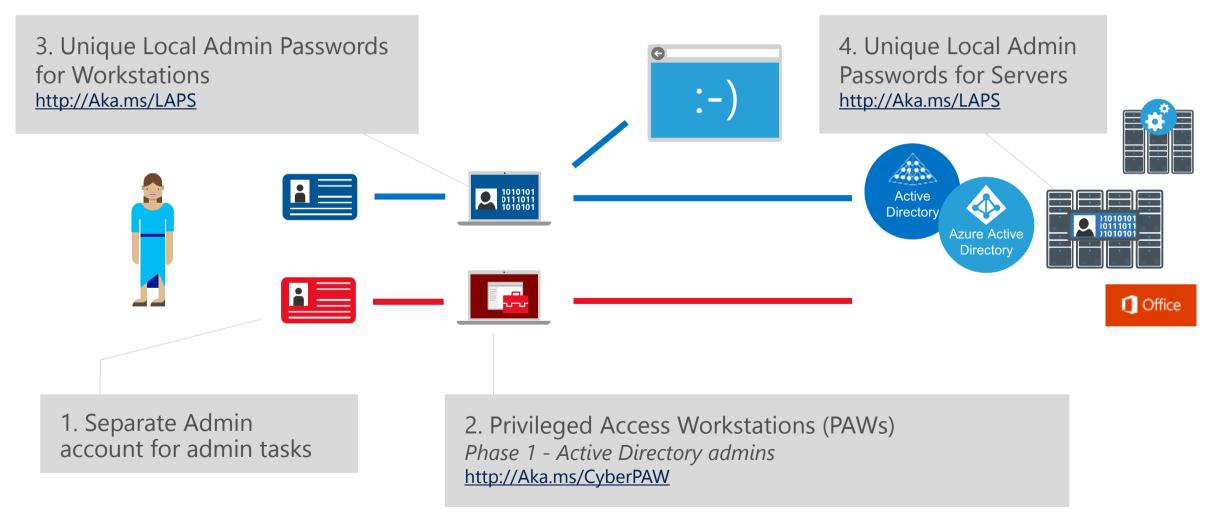
Domain Controller Security Updates Target full deployment within 7 days

Remove Users from Local Administrators

Manage exceptions down to near-zero Ensure only admin of one workstation

Baseline Security Policies

Apply standard configurations Manage exceptions down to near-zero Anti-Malware Detect and clean known threats

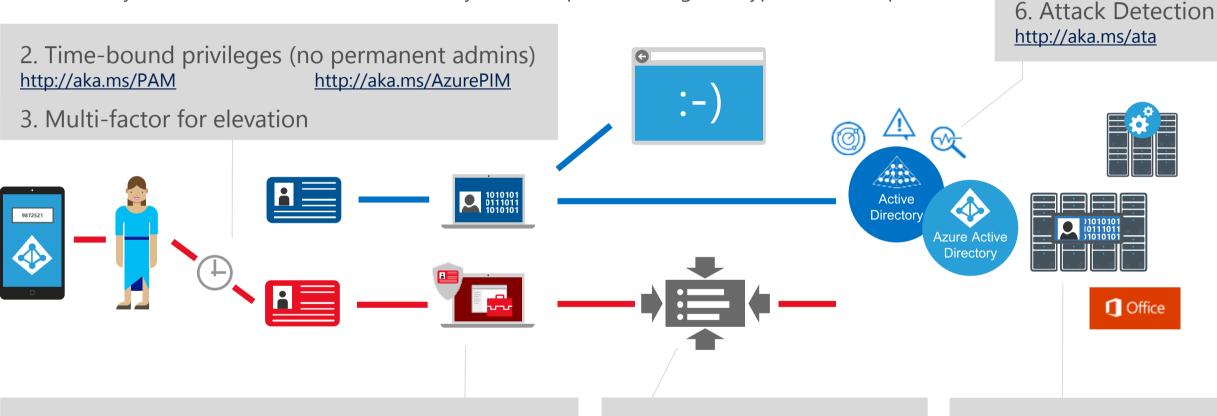

Log Auditing and Analysis Centralize logs to enable investigations and analysis

Software Inventory and Deployment Ensure visibility and control of endpoints to enable security operations

Protecting Active Directory and Admin privileges

2-4 weeks \rangle 1-3 months \rangle 6+ months

First response to the most frequently used attack techniques

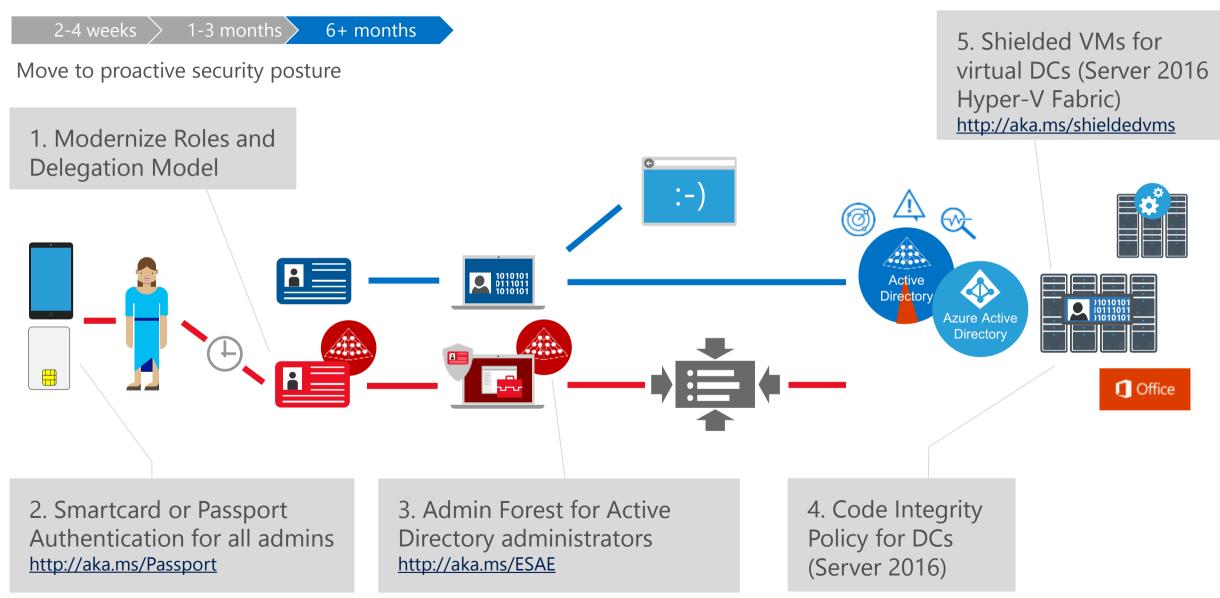

First response to the most frequently used attack techniques

Attack	Defense	2-4 weeks	1-3 months	6+ months				
Credential Theft & Abuse	Prevent Escalation							
	Prevent Lateral Traversal		Top Priority Mitigatio					
	Increase Privilege Usage Visibility							
DC Host Attacks	Harden DC configuration							
	Reduce DC Agent attack surface							
AD Attacks	Assign Least Privilege							
Attacker Stealth	Detect Attacks							

Protecting Active Directory and Admin privileges

2-4 weeks 1-3 months 6+ months

Build visibility and control of administrator activity, increase protection against typical follow-up attacks


1. Privileged Access Workstations (PAWs) Phases 2 and 3 – All Admins and additional hardening (Credential Guard, RDP Restricted Admin, etc.) http://aka.ms/CyberPAW 4. Just Enough Admin (JEA) for DC Maintenance http://aka.ms/JEA

5. Lower attack surface of Domain and DCs <u>http://aka.ms/HardenAD</u>

Build visibility and control of admin activity

Attack	Defense	2-4 wee	eks	1-3 months	> 6+ months	
Credential Theft & Abuse	Prevent Escalation					
	Prevent Lateral Traversal					
	Increase Privilege Usage Visibility					
DC Host Attacks	Harden DC configuration					
	Reduce DC Agent attack surface					
AD Attacks	Assign Least Privilege					
Attacker Stealth	Detect Attacks					

Protecting Active Directory and Admin privileges

Move to proactive security posture

Attack	Defense	2-4 weeks	1-3 months	6+ months
Credential Theft & Abuse	Prevent Escalation			
	Prevent Lateral Traversal			
	Increase Privilege Usage Visibility			
DC Host Attacks	Harden DC configuration			
	Reduce DC Agent attack surface			
AD Attacks	Assign Least Privilege			
Attacker Stealth	Detect Attacks			

JEA: Just Enough Admin

JEA: Just Enough Admin

- Based on the PowerShell security features used by online services
 - Enabled remote administration of Exchange Online
- Simple concepts
 - Role Capabilities
 - Refined set of commands to support the activities of a specific user role
 - Endpoint
 - Management connection point where authorized users are provided the appropriate role capabilities
 - Identity
 - Privileged alternate identity used to invoke commands

Role Capabilities

@{

Description of the functionality provided by these settings Description = 'Role Capabilities for DNS Maintenance'

```
# Modules to import when applied to a session
ModulesToImport = 'DnsServer'
```

```
# Cmdlets to make visible when applied to a session
VisibleCmdlets = 'Get-Service', 'Restart-Service',
'Get-DnsServerCache', 'Clear-DnsServerCache',
'Show-DnsServerCache'
```

```
# Functions to define when applied to a session
FunctionDefinitions = @{
    'Name' = 'whoami'
    'ScriptBlock' = { $PSSenderInfo } }
```

}

Session Configuration

@{

Session type defaults to apply for this session configuration.
Can be 'RestrictedRemoteServer' (recommended), 'Empty', or 'Default'
SessionType = 'RestrictedRemoteServer'

Directory to place session transcripts for this session configuration
TranscriptDirectory = 'C:\Program Files\Endpoints\DnsMaintenance\Transcripts'

Whether to run this session configuration as the machine's
(virtual) administrator account
RunAsVirtualAccount = \$true

```
# User roles (security groups), and the role capabilities
# that should be applied to them when applied to a session
RoleDefinitions = @{
    'DnsAdmin' = @{
        'RoleCapabilities' = 'DnsMaintenance' } }
```


• Who's actually running the commands in a JEA session?

Identity Type	Description
Connected User (Default)	Hosting process runs under the connected user's identity.
Named Identity	Hosting process runs under the credentials of a specific account.
Virtual Account	Hosting process runs under a local temporary administrative identity.
Group Managed Service Account (GMSA)*	Hosting process runs under a managed domain identity that has its password automatically managed and rotated by Active Directory.

Why PowerShell?

- JEA is about controlling admin actions
- Like all shells, PowerShell dispatches commands
 - You can control what gets dispatched by traditional things like path, loading policy, etc.
 - PowerShell adds command visibility
- Unlike many shells, PowerShell also does command parsing!
- Parsing is driven off of data structures
 - Which you can program
 - Which you can program to create **proxies**
- Command visibility and proxies allow us to secure the environment

Creating a Proxy Command

PowerShell owns the Parser

\$cmd = Get-Command Stop-Process \$MetaData = New-Object System.Management.Automation.CommandMetaData \$cmd

You can program a cmdlet's parameters

\$MetaData.Parameters.Remove("ID")
\$MetaData.Parameters.Name.Attributes.Add((New-Object `
 System.Management.Automation.ValidateSetAttribute ("notepad","calc")))
\$MetaData.DefaultParameterSetName ="Name"

And then publish a proxy

\${Function:Stop-Process} =
[System.Management.Automation.ProxyCommand]::create(\$MetaData)

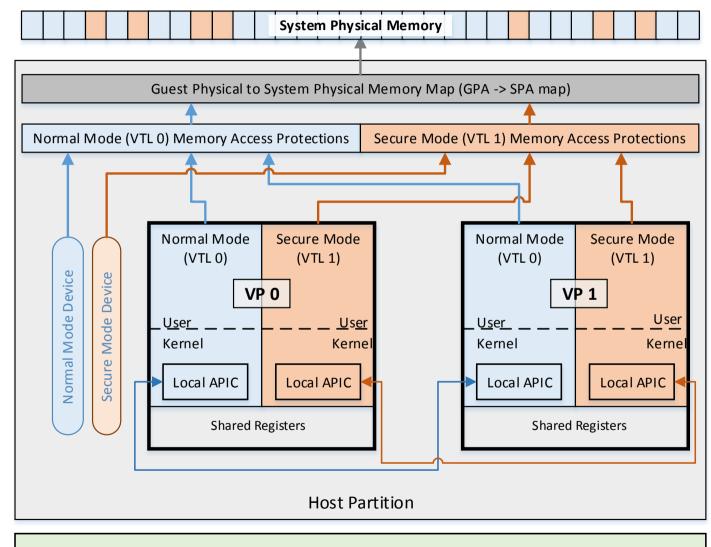
Now hide the original **\$cmd**.Visibility = "private"

Fine-Grained Proxy Control

```
@{
    Name = 'Restart-Service'
    Parameters = @{
        Name = 'Name'
        ValidateSet = 'DNS','DNSCache'
    }
}
```

Creating a Constrained PowerShell Configuration

- New-PSRoleCapabilityFile -Path DnsAdmins.psrc -<...>
- New-PSSessionConfigurationFile -Path DnsMaintenance.pssc -<...>
- Register-PSSessionConfiguration -Path DnsMaintenance.pssc
- Enter-PSSession -ComputerName Server1



Virtual Secure Mode

Virtual Secure Mode (VSM)

- VSM is Microsoft's virtualization-based security solution
- VSM provides the basis for:
 - Secure runtime environment
 - Protected store
- VSM is available to both server and client systems
- No user interaction with VSM

VSM protections

Hypervisor

Virtual Secure Mode (VSM)

- Provides a new trust boundary for system software to:
 - Enhance platform security
 - Leverage platform virtualization to enforce strong access guarantees
 - Limit access to high-value security assets, even from code running in kernel mode
- Provide a secure store and execution environment to enable:
 - Protected storage and management of platform security assets
 - Enhanced OS protection against attacks (including attacks from kernel-mode)
 - A basis for strengthening protections of guest VM secrets from the host OS

Uses for Virtual Secure Mode

- Protect security assets
 - Authenticated user credentials
 - Security keys
 - Security policy
 - Attestation logs
- Host services in isolation from the normal OS environment
 - Windows Security Applications (WSA) or "trustlets"
 - Code integrity enforcement
 - Attestation of host health

VSM platform recommendations

- Virtualization extensions (Intel VT-x)
- Second Level Address Translation (Intel Extended Page Tables, aka EPT)
- IOMMU (Intel VT-d)
- UEFI 2.3.1c or higher
- Secure Boot
- TPM v2.0

VSM memory isolation

- VSM provides memory isolation from:
 - Accesses generated by system processors
 - DMA initiated from devices
- Memory isolation is:
 - Based on Virtual Trust Levels, each with its own set of address space protections
 - Enforced by the hypervisor

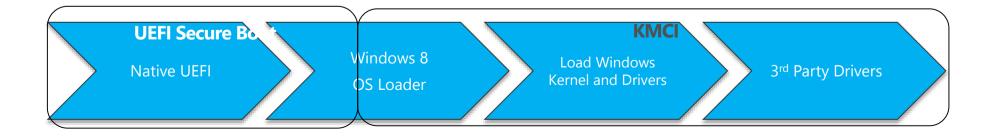
Virtual Trust Levels

- VSM implements trust boundaries via Virtual Trust Levels (VTL)
 - VTLs enhance existing processor privilege levels
- VTLs provide memory isolation
 - Essentially, a set of access protections on physical memory
 - Enforced during the partition's physical memory translation
- VTLs cannot be changed from CPL0 in the partition

Virtual Trust Levels

- VTLs are hierarchical
 - Higher trust level == greater privilege level
- Two trust levels for the initial VSM implementation:
 - VTL0 Normal Mode, VTL1 Secure Mode
 - Design accommodates > 2 VTLs
- Higher VTLs control access privileges for lower levels
 - VTL1 can adjust memory access protections for VTL0

VSM memory isolation


- Isolation from device accesses (DMA) enforced via IOMMU
- Normal Mode devices share Normal Mode memory access protections
 - Cannot access Secure Mode memory

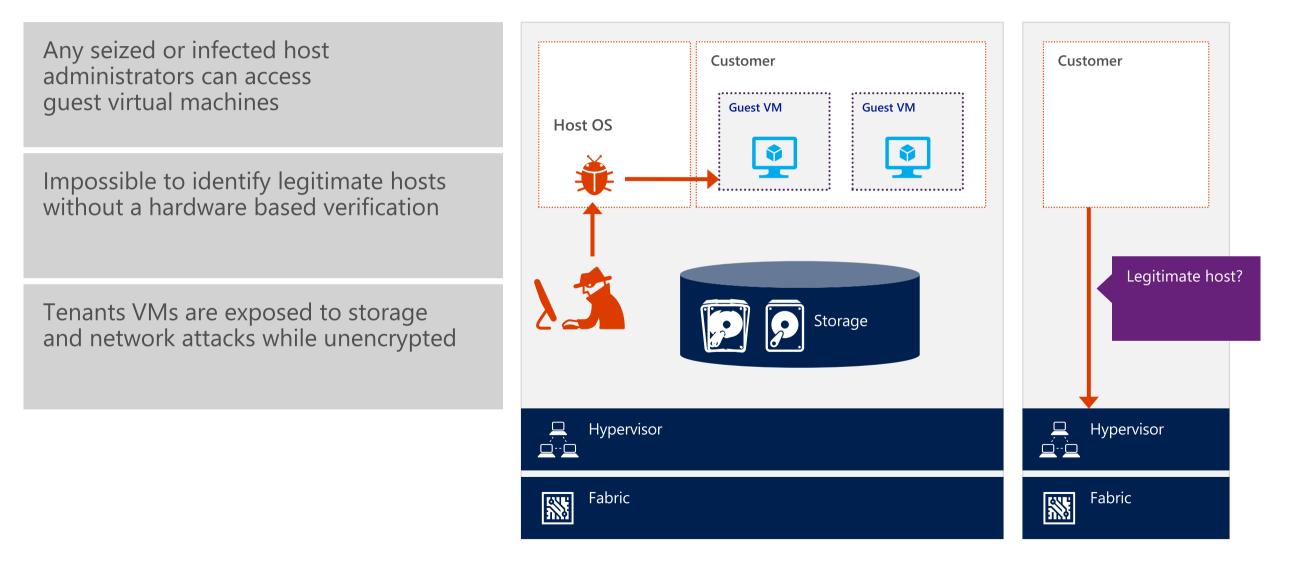
Hypervisor Enforced Code Integrity

Code Integrity Enforcement

- Secure Boot
 - Ensures that everything that boots on a platform is signed by a trusted authority
 - Includes Secure Firmware Updates and "Platform" Secure Boot
- Kernel Mode Code Integrity (KMCI)
 - Feature in Windows that ensures that any code running in kernel is signed by a trusted authority

Hypervisor Enforced Code Integrity

- Currently CI enforcement is done from within the Kernel
- If the Kernel is compromised any code can be executed
- For Hypervisor CI (HVCI) based systems enforcement will be in VSM
- Pages can only be marked executable from VSM after verification in VSM
- Eliminates most memory based attacks
- Reduces risk from 3'rd party drivers


Protect your virtual infrastructure from emerging threats Hardware-rooted security for zero-trust environments

Host Guardian Service Guarded Hosts Shielded VM Virtual secure mode

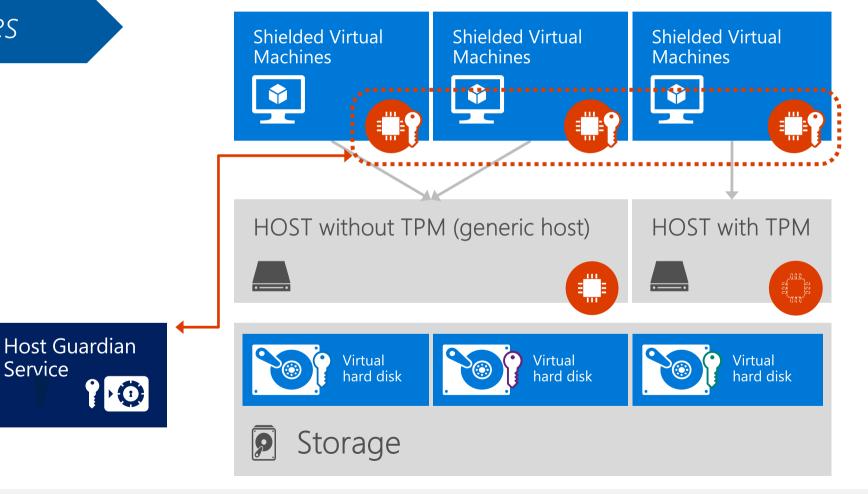
Need to maintain stewardship of corporate assets in the midst of emerging threats

1 Increasing incidents	Cyberattacks on the rise against US corporations	Espionage malware infects rafts of governments, industries around the world		Cybercrime costs US economy up to \$140 billion annually, report says	
Bigger motivations	The New York Times [2014]	Ars Technica [2014]	1		geles Times 2 s Times [2014]
Bigger risk	How hackers allegedly stole "unlimited" amounts of cash from banks in just a few hours	The biggest cyberthreat to companies could come from the inside	Malware burro deep into com BIOS to escap	nputer	Forget carjacking, soon it will be carhacking
	Ars Technica [2014]	Cnet [2015]	The A Register The Register [September 2014]	3	The Sydney Morning Herald The Sydney Morning Herald [2014]

Challenges in protecting high-value assets

Confidently protect sensitive customer data: Designed for 'zero-trust' environments

Hardware-rooted technologies to separate the guest operating system from host administrators	Virtual Secure Mode Process and Memory access protection from the host	Host OS	Customer Guest VM
Guarded fabric to identify legitimate hosts and certify them to run shielded tenant Generation 2 VMs	Host Guardian Service Enabler to run Shielded Virtual Machines on a legitimate host in the fabric	Storage	Trust the host
Virtualized trusted platform module (vTPM) support to encrypt virtual machines	Shielded VM Bitlocker enabled VM	Hypervisor	Hypervisor
		Host Gua Service	ardian ? • • • •


Shielded VMs

Spotlight capabilities

Shielded Virtual Machines can only run in fabrics that are designated as owners of that virtual machine

Shielded Virtual Machines will need to be **encrypted** (by **BitLocker** or other means) in order to ensure that only the designated owners can run this virtual machine

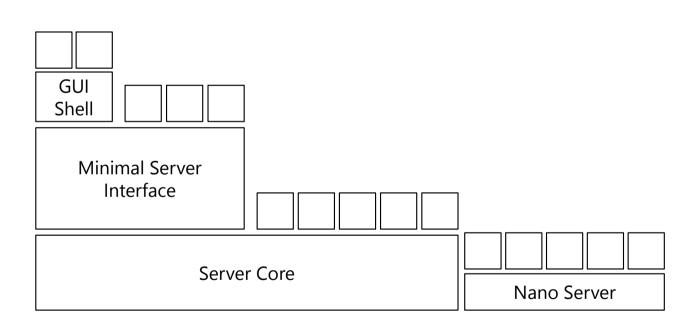
You can **convert** a **running Generation 2 virtual machine** into a Shielded Virtual Machine

Hyper-V

Microsoft System Center

Windows Server

Nano Server Minimum-footprint infrastructure OS and application OS


'Cloud-first' refactoring

Infrastructure:

Hyper-V, Storage, Clustering

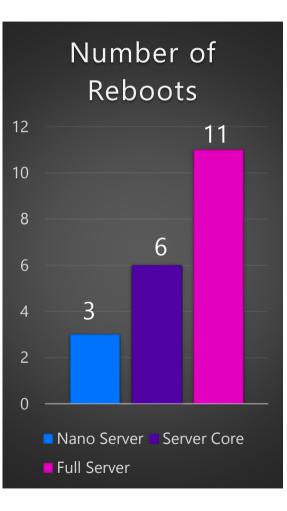
Application:

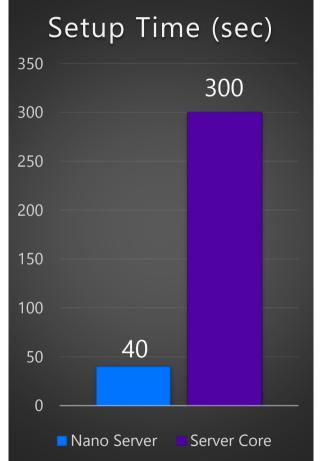
Next-gen application platform and run-time Containers

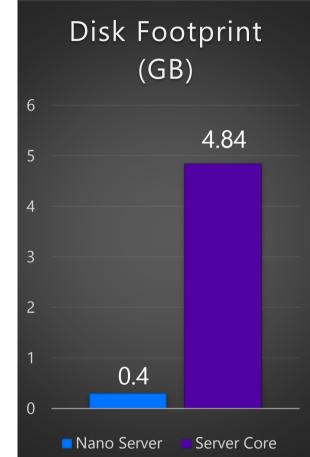
Windows Server 2016

Nano Server – Just enough OS Nucleus of next-gen cloud infrastructure and applications

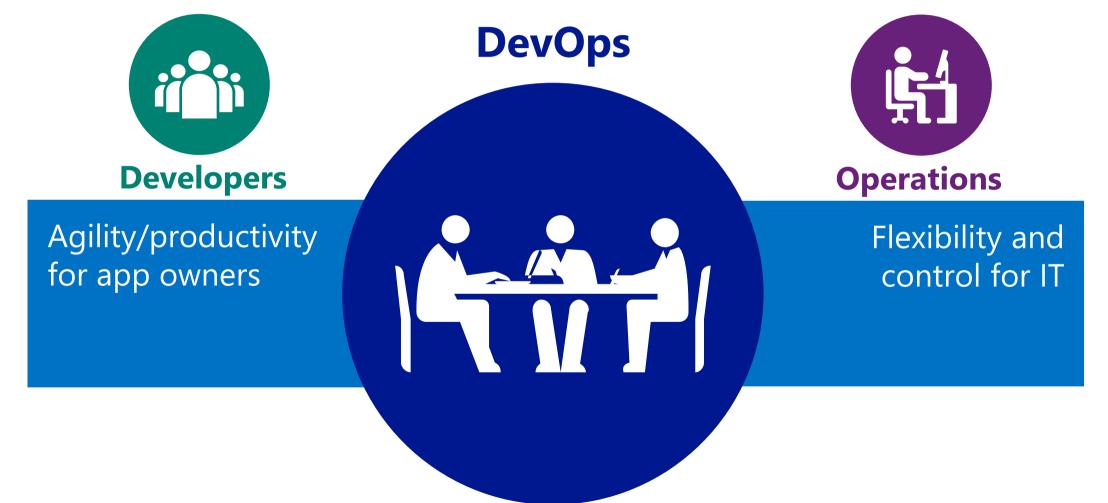
Powers modern cloud infrastructure

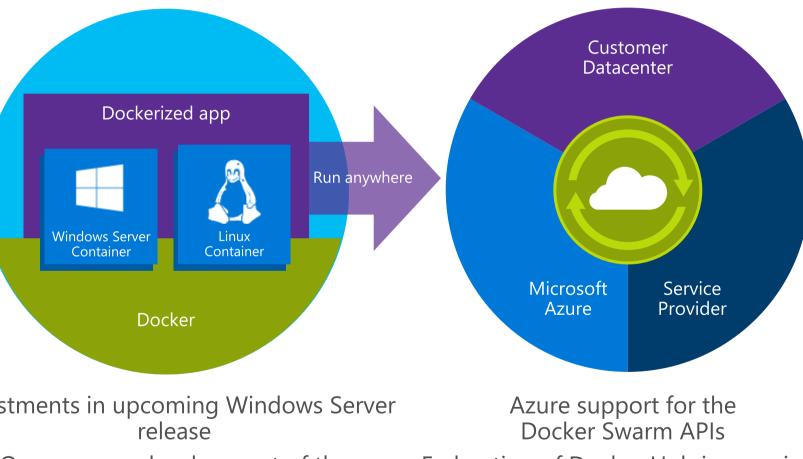

- Faster time to value
- Much lower servicing footprint
- Significantly lower attack surface
- Breakthrough efficiency


- Optimized for next-gen distributed applications
- Higher density and performance
- Next-gen distributed app frameworks
- Interoperate with existing server applications



Preliminary Results


Critical Bulletins ■ Nano Server ■ Server Core Full Server


Why Containers? Containers empower application innovation

Docker integration Joint strategic investments to drive containers forward

Docker: An open source engine that automates the deployment of any application as a portable, self-sufficient container that can run almost anywhere.

Partnership: Enable the Docker client to manage multi-container applications using both Linux and Windows Server containers, regardless of the hosting environment or cloud provider.

Strategic investments

Investments in upcoming Windows Server

Open source development of the Docker Engine for Windows Server Federation of Docker Hub images into the Azure Gallery and Portal

Write once deploy anywhere Modern app development with flexible isolation

